

UNIVERSIDAD CENTRAL DEL ECUADOR

UNIDAD DE FÍSICA

NOMBRE DEL EST	TUDIANTE:		
FACULTAD:			
CARRERA:		FECHA:	
SEMESTRE:	PARALELO:	GRUPO N°.	PRÁCTICA N°.

TEMA: Equivalente mecánico del calor.

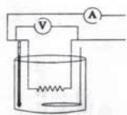
Objetivos

1. Hallar el factor de conversión entre la caloría y el julio utilizando el método eléctrico.

Equipo de experimentación

- 1. Calorímetro de agua con resistencia.
- 2. Balanza digital
- $A = \pm$ ().
- 3. Voltímetro
 - $A = \pm$ ().
- 4. Amperimetro. A=±___()
- 5. Cables para conexión.
- 6. Fuente de energía eléctrica.
- 7. Cronómetro

A=±___()

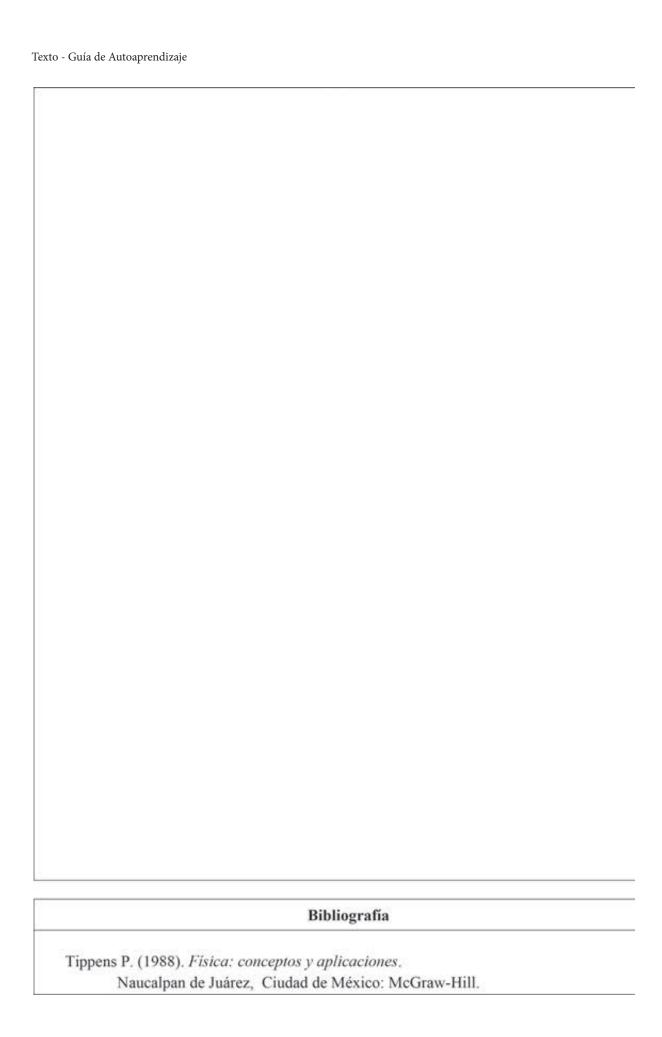

Figura 1. Equivalente mecánico del calor por un método eléctrico.

Fundamento conceptual"

- Unidades de medida de la energía calorífica, definición de caloría, equivalencia con el julio.
- Ley del equilibrio térmico. Cuantificación del calor que un cuerpo puede recibir o entregar: Qg = Qp
- Calor específico de un material: definición, unidad de medida.
- Clase de cambios de fase en los cuerpos:
- Explicación de lo que sucede con la temperatura en todo cambio de fase.

Procedimiento

 Armar el equipo de acuerdo con el siguiente esquema en el cual se observa que el amperimetro se coloca en serie y el voltimetro en paralelo. Observar que el amperimetro y voltimetro se encuentren encerados.



No accionar el funcionamiento del sistema hasta que sea revisado por el instructor.

- Limpiar y secar el calorímetro que corresponde al recipiente que se encuentra en el interior.
- Determinar la masa del calorímetro más el termómetro más el agitador. Registrar este valor en la Tabla 1.
- Agregar la cantidad de agua que permita cubrir la resistencia de la tapa del calorímetro y determinar la masa (calorimetro + agitador + termómetro + agua). Registrar el valor en la Tabla 1.
- 5. Colocar la tapa del calorímetro con su resitencia, el agitador y el termómetro
- 6. Determinar la temperatura inicial del agua, registrar el valor To en la Tabla 2.
- Prender la fuente de poder, ponga en marcha el cronómetro.
- Observe los valores del voltaje e intensidad de corriente. Registre los valores en la Tabla 1.
- Cada 2 °C de incremento, observar el tiempo correspondiente. Registre el valor en la Tabla 2.

		Registro de dato	os	
Tabla 1. Masa, voltaje e i	ntensidad de corrient	e.		
Masa Calorímetro + Agitador +Termómetro	Masa Calorímetro + Agitador +Termómetro + Agua	Masa del Agua	Voltaje	Intensidad
(Kg)	(Kg)	(Kg)	(V)	(A)

Temperatura	Tiempo
(°C)	(s)
	Cuestionario
Elabore la gráfica Cantidad misma.	l de calor en función del tiempo y analizar la
	(C)
	Conclusiones

